Global MicroRNA Characterization Reveals That miR-103 Is Involved in IGF-1 Stimulated Mouse Intestinal Cell Proliferation
نویسندگان
چکیده
MicroRNAs play extensive roles in cellular development. Analysis of the microRNA expression pattern during intestinal cell proliferation in early life is likely to unravel molecular mechanisms behind intestinal development and have implications for therapeutic intervention. In this study, we isolated mouse intestinal crypt cells, examined the differences in microRNA expression upon IGF-1 stimulated proliferation and identified miR-103 as a one of the key regulators. Mouse intestinal crypt cells were cultured and treated with IGF-1 for 24 h. MicroRNA microarray showed that multiple microRNAs are regulated by IGF-1, and miR-103 was the most sharply down-regulated. Expression of miR-103 in mouse intestinal crypt cells was confirmed by real-time Q-PCR. Sequence analyses showed that, among the 1040 predicted miR-103 target genes, CCNE1, CDK2, and CREB1 contain complementary sequences to the miR-103 seed region that are conserved between human and mouse. We further demonstrated that miR-103 controls the expression level of these three genes in mouse crypt cells by luciferase assay and immunoblotting assay. Taken together, our data suggest that in mouse intestinal crypt cells, miR-103 is part of the G1/S transition regulatory network, which targets CCNE1, CDK2, and CREB1 during IGF-1 stimulated proliferation.
منابع مشابه
Inhibition of microRNA-19b promotes ovarian granulosa cell proliferation by targeting IGF-1 in polycystic ovary syndrome
The purpose of the present study was to investigate the functional role of microRNA (miR)-19b in polycystic ovary syndrome (PCOS) and try to elucidate its underlying mechanisms. Expression of miR‑19b and insulin‑like growth factor 1 (IGF-1) was examined in ovarian cortexes [(from 18 women with PCOS and 10 who did not have PCOS (non‑PCOS)] and KGN cells. Cell proliferation assays (cell viability...
متن کاملMicroRNA Profiling Reveals Unique miRNA Signatures in IGF-1 Treated Embryonic Striatal Stem Cell Fate Decisions in Striatal Neurogenesis In Vitro
The striatum is considered to be the central processing unit of the basal ganglia in locomotor activity and cognitive function of the brain. IGF-1 could act as a control switch for the long-term proliferation and survival of EGF+bFGF-responsive cultured embryonic striatal stem cell (ESSC), while LIF imposes a negative impact on cell proliferation. The IGF-1-treated ESSCs also showed elevated hT...
متن کاملMicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways
The mechanisms underlying the development of aging-induced muscle atrophy are unclear. By microRNA array and individual qPCR analyses, we found significant up-regulation of miR-29 in muscles of aged rodents vs. results in young. With aging, p85α, IGF-1 and B-myb muscle levels were lower while the expression of certain cell arrest proteins (p53, p16 and pRB) increased. When miR-29 was expressed ...
متن کاملMicroRNA Expression Profile of Neural Progenitor-Like Cells Derived from Rat Bone Marrow Mesenchymal Stem Cells under the Influence of IGF-1, bFGF and EGF
Insulin-like growth factor 1 (IGF-1) enhances cellular proliferation and reduces apoptosis during the early differentiation of bone marrow derived mesenchymal stem cells (BMSCs) into neural progenitor-like cells (NPCs) in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). BMSCs were differentiated in three groups of growth factors: (A) EGF + bFGF, (B) EGF +...
متن کاملIntegrating analysis reveals microRNA-mediated pathway crosstalk among Crohn's disease, ulcerative colitis and colorectal cancer.
Inflammatory bowel disease (IBD), which can increase the risk of colorectal cancer (CRC), includes two primary subtypes, ulcerative colitis (UC) and Crohn's disease (CD). Although several individual genes involved in inflammation or cancer characterization have been identified, it is still difficult to elucidate functional relationship details between the molecules underlying pathogenesis at th...
متن کامل